b-log – betriebsraum weblog

Software Development, Human-Computer Interaction, Projects…

Using Swift to Predict Revisitations and Reuse

July 4, 2014

AccessRank is a Swift implementation of the AccessRank algorithm by Fitchett and Cockburn (full reference below) for iOS and Mac OS apps. The algorithm predicts which list items users might select or visit next by taking multiple sources of input into account. For instance, you could use AccessRank to generate a list of predictions for:

To improve on other common methods such as recency-based and frequency-based predictions, AccessRank adds Markov weights, time weighting, and other parameters for calculating a final score for each item, while the algorithm tries to maximize both prediction accuracy and list stability. Prediction accuracy is important since top items are easier and faster to access than items in bottom sections; list stability is important since automatic reordering of items can impede usability when users try to reselect an item based on an already learned location. You can configure the algorithm depending on whether you prefer more prediction accuracy or more list stability.

Once AccessRank has calculated predictions, you can use the resulting list to enhance your user interface in various ways. For example, you could display the most likely next items in an additional list as suggestions, or you could visually highlight relevant objects to give users cues where they might want to go next.

Here’s the full reference for the AccessRank algorithm by Fitchett and Cockburn:

Stephen Fitchett and Andy Cockburn. 2012. AccessRank: predicting what users will do next. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). ACM, New York, NY, USA, 2239-2242.

View the Github page

Filed under: HCI, iOS / Objective-C / Swift

Add a comment

You must be logged in to post a comment.